On the Finiteness Results of Generalized Local Cohomology Modules with Respect to a Pair of Ideals
نویسندگان
چکیده
منابع مشابه
Serre Subcategories and Local Cohomology Modules with Respect to a Pair of Ideals
This paper is concerned with the relation between local cohomology modules defined by a pair of ideals and the Serre subcategories of the category of modules. We characterize the membership of local cohomology modules in a certain Serre subcategory from lower range or upper range.
متن کاملLocal Cohomology with Respect to a Cohomologically Complete Intersection Pair of Ideals
Let $(R,fm,k)$ be a local Gorenstein ring of dimension $n$. Let $H_{I,J}^i(R)$ be the local cohomology with respect to a pair of ideals $I,J$ and $c$ be the $inf{i|H_{I,J}^i(R)neq0}$. A pair of ideals $I, J$ is called cohomologically complete intersection if $H_{I,J}^i(R)=0$ for all $ineq c$. It is shown that, when $H_{I,J}^i(R)=0$ for all $ineq c$, (i) a minimal injective resolution of $H_{I,...
متن کاملUPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES
Let $R$ be a commutative Noetherian ring with non-zero identity and $fa$ an ideal of $R$. Let $M$ be a finite $R$--module of finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $lc^{i}_{fa}(M,N)$ in certain Serre subcategories of the category of modules from upper bounds. We define and study the properti...
متن کاملFiniteness of certain local cohomology modules
Cofiniteness of the generalized local cohomology modules $H^{i}_{mathfrak{a}}(M,N)$ of two $R$-modules $M$ and $N$ with respect to an ideal $mathfrak{a}$ is studied for some $i^{,}s$ witha specified property. Furthermore, Artinianness of $H^{j}_{mathfrak{b}_{0}}(H_{mathfrak{a}}^{i}(M,N))$ is investigated by using the above result, in certain graded situations, where $mathfrak{b}_{0}$ is an idea...
متن کاملOn formal local cohomology modules with respect to a pair of ideals
We introduce a generalization of formal local cohomology module, which we call a formal local cohomology module with respect to a pair of ideals and study its various properties. We analyze their structure, the upper and lower vanishing and non-vanishing. There are various exact sequences concerning the formal cohomology modules. Among them a MayerVietoris sequence for two ideals with respect t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Taiwanese Journal of Mathematics
سال: 2018
ISSN: 1027-5487
DOI: 10.11650/tjm/8112